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A solid, suspended on a horizontal rod, with three pair-wise orthogonal 
axes of symmetry which is placed in an ideal incompressible fluid 
executing a vortex-free motion is considered. The body has a cavity 
containing a fluid which is covered by an elastic membrane. Under 
certain conditions, the equations of motion of the system permit uniform 
translational motions of the whole system as a single body. The 
stability conditions for such motions are given. 

1. Forsailation of the p~obtem. Let a solid S with three pairwise orthogonal axes of 
symmetry move in an ideal incompressible fluid of density p which is at rest at infinity. 
The body has a cavity containing an ideal fluid of density p' covered by an elastic membrane 
C of density p', the contour of which, dZ, is fixed onto the wall of the cavity. The 
"external fluid - body - internal fluid - membrane" system is located in a uniform gravi- 
tational field with an acceleration g. 

\a 

Fig.1 
Let us now introduce three orthogonal coordinate systems: 

@E'@'Z* with the unit vectors i’, j’, k 
the inertial coordinate system 

vertical, 
and with the s'-axis directed along the ascending 

a moving 0x.p coordinate system with theunit vectors i, j,k, the axes of which 
coincide with the axes of symmetry of the body S, and the coordinate system 
axes of which are parallel to the I-, y- 

QXYZ, the 
and s-axes and the blXY plane contains the area 

'C which is occupied by the membrane in the undeformed state. We shall assume that the body 
is suspended from a horizontal bar directed along the y'-axis using a solid rod Pg of 
negligibly snail mass located along the z-axis and that OP = a and PQ = L. We shall 
neglect the friction and action of the external fluid on the rod when the end of this rod Q 
moves along the axis of suspension (see Fig.1). 

Let z be the part of the cavity which is occupied by the fluid and let o be the part 
of its wall which is wetted by the fluid. We will assume that the membrane is constantly in 
contact with the fluid and that the Dart of the cavity which is enclosed between the membrane 
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G and the remaining part of the wall o‘ is filled with air at a constant pxessure pO. We 
will denote transverse displacements of points of the membrane by w(X, y, t). 

Let I&, pi and pm be the mass of the body, of the internal fluid and of the membrane 
respectively and q, yl, zI; x2, yr, s2 and rrSr 91, and z12 be the coordinates of the centres 
of gravity G,, Ge and G,, of the internal fluid, the membrane and the "internal fluid - 
membrane" system respectively. Finally, the central moments of inertia of the body S are 
denoted by A, B and C. 

2. Equations of motion. We shall assume that the motion of the external fluid is vortex- 
free relative to the 0's'~'~' coordinate system. There then exists a velocity potential 

Q, (s, Y, 2, t) which depends on the Z, y, 2 coordinates of a fluid particle, By virtue of 
the condition for the slippage of the fluid over the surface of the body S, the potential can 
be represented in the form 

where VI, %I v3 and %r % 03 are the projections of the translational 
(the velocity of the point 0) and of the instantaneous angular velocity 
r-, y- and z-axes while 'pi (i = 1, . . . . 6) are solely functions of 2, y 
harmonic in the domain occupied by the external fluid. These functions 
well-known Neu!mann problems /I/. 

velocity vectors v 
a, of the body S on the 
and z and they are 
are solutions of 

The kinetic energy of the external fluid is finite and is given by the formula 

where &/an is the derivative with respect to 93 along the direction of the external normal 
to the surface 8s of the body S. Using Tf', it is possible to calculate the forces which 
are exerted by the fluid on the body S. 

In the case under consideration, when the body S has three pair-wise orthogonal axes of 
symmetry, we obtain the following expression for the kinetic energy T of the "body - external 
fluid** system II/ 

We will denote by (R,,Rf,), (Rm, k&) and (RI, M,) the principal vector and the principal 
moment with respect to the point 0 of the forces due to the pressure of the air between Z and 
o' on the body S, the tensile forces on the membsane which are distributed over the contour 
dS and the forces due to the pressure of the internal fluid while, we will denote byRthe 
reaction on the rod at the point Q of the axis of suspension y' normal to y'. The equations 
of motion of the body S can then be written in the form 

~(grad,T)=--*gk’+R,+R,+RtfR 

-& (grad, T) -t- v x grad, T =M,+kI,$Mf+roxR 

I2.V 

where rp is the radius vector of the point Q with respect to the point 0. 
The equations of motion of the "internal fluid - membrane" system have the form 

(Pr + Pm) w = -((w + pm)&-RR,-R,-R, 

xr o+~.~+f~,++II,)~l*‘X~l-t~X(~f~~I*n)~= D K 

-rr,,'x(ILti-~)glr'-MM,-MM,-MMf 

(2.2, 

where 5' is the radius vector of the point G,, with respect to the point O', K, is the 
kinetic moment with respect to point 0 of the "internal fluid - membrane" system in its motion 
with respect to the 0rcy.s coordinate system and 0, is its inertia tensor with respect to the 
point 0. 

By adding the corresponding Eqs.IZ.1) and (2.2) term by term, denoting differentiation 
with respect to time in the coordinate system Oxys by didt and using the Coriolis theorem, 
we obtain 



-$(grad,T)+ca x grad, T +(h i- ~4 [$ + s -I- 0 X v $- 

de ~r,,+o~r,,+&ex+- dt 1 
=-(P~+F~+P,,J&'+R' 

~[gfad,T+K,+go.o+(y,+~mfrlsXVj+. 

o x [grad,T + R, + @c,.w +(w + ILL)% X VI+ 

v x [grsd,T + (F,+ p,,(+- 5 v +a X rr~)] = 

- r12 x (& + Pm)k' + r12 x R 
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(2.3) 

(2.4) 

We will write the equation for the transverse vibrations of the membrane in the form 

Here p* is the fluid pressure, T” is the membrane tension, c,, 5, and & are the cosines 
of the angles which are formed by the s'-axis with the I-, Y-, z-axes, .Q, y, and z,, are 
the coordinates of the point Q and dots indicate differentiation with respect to time. 

Denoting the velocity of a fluid particle relative to the axes of the O;CYZ coordinates 
by u and its radius vector with respect to point 0 by r, we have the equation of motion of 
the fluid with the boundary conditions 

au -;ii-+~+OXV+~X’$.0X(~X’)+20xu~ 
-&'--sgradp', divu=O in T 

u.n=O on I3 

u,~+U,$&Ua++~o on x 

Here n is a unit vector of the external, with respect to the domain z, to the surface 
and ut, u, and ua are the projections of the vector u on the X-, y- and z-axes. Terms of 
higher than first order with respect to the partial derivatives of the function w are dis- 
carded in the second condition. 

The assumption regarding the attachment of the edge of the membrane to the wall of the 
cavity and the constancy of the volume of the fluid lead to the conditions 

~~0 on az; ~rada=O 
s8 

Let us now add the kinematic Poisson equation 

-$-+wX j'=O, ++oxk'=O 

and the condition of the orthogonality of the reaction R to the $-axis 

R.j'= 0 

to the equations which have been obtained above. 
Finally, by differentiating the relationship rO' = O'Oj' - (a -+ L)k', where rO' is the 

radius vector of point 0 relative to point 0' and denoting the projections of the vector j 
on the x-, y- and s-axes by %* 'Ia and q,, we get the equations 

3. First integrals. By noting that the vectors R and k' are perpendicular to the y'- 
axis, we obtain the first integral 

[grad, T i_ @I t_ h}(* -j- v + w X PIP)] -f = eon.% (3.1) 

from Eq.(2.3). 
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There is also an energy integral for the "external fluid - body*'- internal fluid membrane 
system which, using T, and T, for the kinetic energies of the internal fluid and the 
membrane, can be written in the form 

T $- T, + T, = - p.gr,,’ . k' - (pf + p,) r,,‘k’ - -$- 
s 

(10x* + K@) do + const (3.2) 
a* 

4. PapticuZur sdutioff and t~f~~t~ of the first integm2s. Let us find the 
conditions for a uniform translational motion to exist in the direction of the y'-axis with 
a specified velocity u in which the CC-, y- and z-axes are parallel to the xl-, y'- and' x'- 
axes, the rod PQ is directed along the ascending vertical, the fluid and the membrane are at 
rest with respect to the body with the membrane in the undeformed state 8,. In this motion, 
we have 

q, = 0, qr = 1, ?b = 0, & = I;* = 0, 53 = 1 (4.1) 

VI = 0, 0, = 0, as = 0, OX = 0, = 0, = 0, uz.5 0, w=o 

On introducing these values into the equations of motion, we conclude that R = (~3 t- 
Pj + Pm) gk', the vector rn is parallel to s-axis and p' = p. fp’g + p’g(z - zo). 

Hence, for the required motion to exist, it is necessary that the centre of gravity, G,*, 
of the "intexnal fluid - membrane" system, when the latter is in the undeformed state 2,, 
should lie on the s-axis. This condition is satisfied if, in the case of the cavity and the 
areas E,, the planes z=o and y=o are planes of symmetry. 

In order to investigate the stability of the above-mentioned motion we transform the 
first integrals by introducing into them velocities with respect to axes, which move uniformly 
and progressively at a velocity v = uj’. 

We denote by uIr IL% and utl the projections of the velocity of a fluid particle or the 
membrane with respect to the O's'y'z' coordinate system and we put 

where ui and ui (i =I, 2, 3) are the values of the corresponding variables in the perturbed 

motion. By expressing the kinetic energy of the "external fluid - body" system. of the 
internal fluid and the membrane, we can represent the first integrals in the form 

iDX + @'a + f F,p’d-c+ $F,p” da = const (4.2) 
C 

5. The pro&f%em of stability. By multiplying the integral. (4.21 by v and subtracting 

it from (4.3), we obtain the first integral 

E + W = con& (5.1) 

2~=~~+(~+h,~~~+(~+a~)0*~+(C+h~~~i~F*p'dz+S'F~~p"do 
* r 

2~=~aI(~~--hl~rll*+(~*-~~~tls~1-2((Il‘+Ilf+~m)g(a+L)5rr+ 

2gSF,p'd~ +2&',p"do+ T”S (~2 + wy2)duo 
7 x r. 
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which will be used to study the stability of the motion (4.1). 
The expression for E is a positive-definite functional which is solely dependent on the 

velocities, while W is a functional which is solely dependent on the position of the body S 
and the configuration of the fluid and the membrane. This makes it possible to use the 
stability theorem due to Rumyantsev /2/. 

Let us denote the value of W in the unperturbed motion by W, and investigate the dif- 
ference W- W,. We first consider the difference 

where z0 is the domain which is occupied by the fluid in the unperturbed motion. We shall 
write it in the form 

The first integral is calculated by successive integration. Noting that & = 1 - '/a(&2 f 

b3 +.. . and denoting the vector with the projections cl, & and -lZg (LIZ i- &.') on the 
x-, y- and z-axes by 8, we obtain the expression 

for the difference under consideration. 
Let us now consider the difference 

which we represent in the form 

Since WIO + ILmr80 = (Pj + pm) (rlJo and it follows from the condition j' . k' = 0 that 
5n = -% tb a first approximation, we get, using the variables 717 rls and L1 that 

2(W- W,) = u*(hp - A,)nr2 + Hqs* + H'&e + 2p'g& s xw do, - 
2. 

%‘m 5 YW da, + p’g 5 ~9 do, + (T” + p’gz,) 5 (wx* + ~2) do + . . . 

H = v2 :i - M + g I;;* -t pj + pm) (a + :) - (pj + ym) (Z&E 
H’ = H - v2 (A, - ha) 

where terms of higher than the second order of smallness in ql, Q, &, w, wx and wr are 
denoted by the string of dots. 

By taking account of the inequality 

where Z,, and Zv, are the moments of inertia about the I- and Y-axes of the projection of 
the area Z, on the z = 0 plane, and the inequality 

where v0 is the smallest eigenvalue of the boundary-value problem 

AW +VW = 0 on X,;w=O on az, P 

it is seen that the quadratic part V,S2W of the difference W- W, satisfies the inequality 
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The coordinate (~~2) is, of course, less than a +L and the constant H' is positive. 
On the other hand, the coefficient of the last term is positive if the tension T" is sdf- 
ficiently larqe. Hence, by virtue of Rumyantsev's theorem, the conditions: T" is sufficiently 

larger is > *I and 9 t*, - *3) + g [(IL& + Pf + Pm) (a + L) - (Pf + pm) (2,&l > u 
are sufficient for the unperturbed motion (4.1) to be stable with respect to the parameters 
defining the position and velocity of the body S, to the norm II tull,.~,~, and the kinetic energy 
of 

1. 

2. 

3. 

4. 

5. 

6. 

the fluid and the membrane in their motion with respect to the'body S. 
Similar planar problems have been considered in /3-61. 

-_ 
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